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Outline

1 What is predictability?
Initial-value vs. forced-response problem.

2 Information theory and climate forecasts.
Predictability as information gain beyond equilibrium
climate.
Model error as lack of information relative to nature.

3 Long-range forecasts in a double-gyre ocean model.
Revealing long-range predictability by data clustering.
Model error in Markov models of regime transitions.



Key points

Dynamical-system predictions as communication across a
channel.

Predictability⇐⇒ channel capacity.
Model error⇐⇒ suboptimal coding.

Low-frequency variability does not necessarily imply
predictability.

Identifying predictability via relative entropy.

Long-range predictability can be revealed by an
appropriate coarse-grained partition of a set of
(incomplete) initial data.

Clustering helps beat the “curse of dimension”.

Forecasts with imperfect models must be assessed via
1 Fidelity in reproducing the equilibrium climate.
2 Dynamical error during relaxation to equilibrium.
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The climate’s energy budget

Kiehl & Trenberth (1997), Bull. Amer. Met. Soc., 78, 197.



Initial-value vs. forced-boundary forecasts

lead time→

daily weather seasonal decadal century climate
forecasts outlooks predictions projections

initial-value
problem

forced boundary-
value problem

↑
regime behavior
North Atlantic
oscillation,
Pacific Decadal
oscillation, . . .

After Meehl et al. (2009), Bull. Amer. Met. Soc., 89, 303.



Pacific decadal oscillation (PDO)

A low-frequency oscillation
of the sea surface
temperature in the North
Pacific, classified as being in
either warm or cool phases.

Cool phase (shown left) is
associated with
below-average precipitation
in the Southwestern US.

Only 2–3 cycles in the last
century.

Dynamical origins and
predictability are an area of
active research.

Image sources: earthobservatory.nasa.gov/IOTD,

www.cgd.ucar.edu/cas/jhurrell/indices.info.html

earthobservatory.nasa.gov/IOTD
www.cgd.ucar.edu/cas/jhurrell/indices.info.html


Forecast probabilities
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The equilibrium
distribution peq(At)
describes our prior
knowledge about an
observable At, assuming
that changes in external
forcings are not important.
At is said to be predictable
at time t if the distribution
p(At | S) given some initial
data S differs from peq(At).

For t′ sufficiently larger
than t, p(At′ | S) relaxes
towards peq(At).

Need a notion of distance between probability distributions.
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What is predictability?

Information theory and climate predictions

Long-range forecasts in a double-gyre ocean model



Information theory

Pioneered by Claude Shannon in 1948 as a
mathematical theory of communication.∗
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Entropy measures the
uncertainty about a physical
system:

H = −
∑

i

pi log pi.

∗Shannon (1948), Bell System Technical Journal, 27, 379.



Relative entropy
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Relative entropy:

P(p, q) =
∫

dA p(A) log
p(A)

q(A)
.

Relative entropy describes a notion of “distance” between
probability distributions:

P(p, q) is positive if p 6= q, and zero if p = q.
P(p, q) is invariant under general invertible
transformations of A.

However, P(p, q) is not symmetric under p↔ q, and does not
obey the triangle inequality.



Interpretations of relative entropy
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1 P(pposterior, p) with
pposterior = p(At | S) is the
information gain relative to the
prior distribution p(A) achieved
by a measurement S.

2 P(p, pmodel) measures the lack of
information or ignorance in a
distribution that describes a
system by pmodel when the
outcomes are actually generated
by p.

Note the different position of p in the
“slots” of P(·, ·).



Quantifying predictability and model error∗
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Predictability: Gain of information
about At beyond equilibrium
achieved by observing the initial
data S:

Dt = P(p(At | S), peq(At)).

Model error: Lack of information
in the model probability
distribution pM relative to the
truth:

Et = P(p(At | S), pM(At | S)).

∗Kleeman (2002), J. Atmos. Sci., 59, 2057; Majda et al. (2002), Methods Appl.
Anal., 9, 425; Roulston & Smith (2002), Mon. Weather Rev., 130, 1653.



Mutual information
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Different initial data,
S1,S2, . . ., will give rise to
different amounts of
information gain, as
measured by
P(p(At | Si), p(At)).

The expectation value of P over Si is also a relative entropy, called the
mutual information between At and S:

I(At;S) =
∫

dS p(S)
∫

dAt p(At | S) log
p(At | S)

p(At)
= P(p(At,S), p(At)p(S)).

I(At;S) is non-negative, and vanishes if and only if At and S are
statistically independent, i.e., iff

p(At,S) = p(At)p(S).



Fundamental questions
Coding theory

What is the ultimate rate of communication across a channel?
Answer: The maximum (over input distributions) of the mutual
information I(A;B) between the input A and output B.

What is the expected increase in code length when a probability
distribution q is used to encode a message when the message is
generated by a source distribution p?
Answer: The relative entropy P(p, q).

Climate science
What is the predictability of At at time t in the future, given
initial data S?
Answer: The mutual information I(At;S)

What is the error in a model that predicts At with a distribution
pM when in reality At is generated by p?
Answer: The relative entropy P(p, pM).



Example: Three-mode stochastic model
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Three-mode model with linear and dyad interactions between
mode x (resolved) and yi (unresolved):

dx = (Ixy1 + L1y1 + L2y2 + F + Dx) dt

dy1 =
(
−Ix2 − L1x− γ1ε

−1y1
)

dt + σ1ε
−1/2 dW1,

dy2 =
(
−L2x− γ2ε

−1y2
)

dt + σ2ε
−1/2 dW2.

Reduced scalar model, describing the limit ε→ 0:∗

dx = (F̃ + ax + bx2 − cx3) dt + (α− βx) dW1 + σ dW2.

∗Majda, Timofeyev, Vanden Eijnden (2003), J. Atmos.Sci., 60, 1705.



Example: Three-mode stochastic model
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Lead time t

For small-enough ε (e.g., ε = 0.1 shown here), the three-mode
and scalar models have comparable low-frequency variability.

Measure predictability via

Dt = I(x(t); x0), δt = 1− exp(−2Dt).

Relative entropy reveals the loss of predictability due to the
stochastic approximation of the interaction between x and
(y1, y2).



What is predictability?

Information theory and climate predictions

Long-range forecasts in a double-gyre ocean model



Global ocean winds

Source: Trenberth et al. (1990), J. Phys. Oceanogr., 20, 1742.



Global ocean winds

Source: Trenberth et al. (1990), J. Phys. Oceanogr., 20, 1742.

Typical ocean basin simulated using a “1.5-layer” model with
constant wind forcing.∗

∗McCalpin & Haidvogel (1996), J. Phys. Oceanogr., 26, 739.



Three-state phenomenology of the 1.5-layer model
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Regimes persist for
O(1000) days.
The equilibrium
distribution of
energy has no local
maxima.



Long-range, coarse-grained forecasts

• coarse initial data
• detailed initial data

n-dim. space of initial data

range

D
t

forecast lead time t

short long
range

Due to chaotic mixing,
detailed initial data
contribute negligible
information for long-range
forecasts.

Even small uncertainties in
the initial state will
dominate the signal
beyond a period of ∼two
weeks.



Long-range, coarse-grained forecasts

regime 3

n-dim. space of initial data

regime 1

regime 2
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Strategy
1 Instead of detailed initial

data, it suffices to consider
the (integer-valued)
affiliation of the system to
a coarse-grained partition of
Rn to make long-range
forecasts.

2 Determine the partition
empirically, by
data-clustering realizations
of the system in
equilibrium.



Assigning cluster affiliation
n-dim. space of initial data

z∆τ

θ3
θ2

d2

d1 d3

θ1

Each cluster is characterized by
its centroid, θk.

1 Collect observations z(t) over a time window ∆τ and
compute the average,

z∆τ =
1
∆τ

∫
∆τ

dt z(t).

2 Set S equal to the cluster that lies closest to z∆τ , i.e.,

S = argmin
k

dk, dk = ‖z∆τ − θk‖.



The predictive information content in a partition

peq(At)
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p(At | 3) Predictive information given that the
initial data lie in the k-th cluster:

Dk
t = P(pk

t , peq), pk
t (A) = p(At | S = k).

“Super-ensemble” measure of skill:

Dt =

K∑
k=1

πkDk
t , πk = p(S = k).

Interpretation
Dt is equal to the mutual information I(At;S) between the
coarse-grained initial data S and the value At of the
prediction observable at time t.
Dt vanishes if and only if S and At are statistically
independent; namely, in the t→∞ limit.



Coarse-grained partitions
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equilibrium

The point cloud of data in equilibrium.

Distinct regimes exist despite the lack of maxima in the
equilibrium distributions of the PCs.

Running-average smoothing of the training data and the initial
conditions is crucial to reveal regimes.



Coarse-grained partitions

−3

−2

−1

0

1

2

3
−2 −1 0 1 2 3 4 5

−2

0

2

PC
2

PC
1

P
C

4

−2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

PC
1

P
ro

b
. d

en
si

ty

K=7 partition

 

 

equilibrium

regime 1

regime 7

Distinct regimes exist despite the lack of maxima in the
equilibrium distributions of the PCs.

Running-average smoothing of the training data and the initial
conditions is crucial to reveal regimes.



Circulation regimes

Cluster-conditional mean and standard deviation of the
streamfunction anomaly.



Long-range forecasting skill
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Predictability decays more slowly than an exponential
decay based on the decorrelation time τc.
Energy is predictable up to ∼ 7 years in advance.
The leading PCs governing the large-scale structure of the
flow are predictable up to ∼ 5 years in advance.



Long-range forecasts with imperfect models

Internal metric of “skill”:

DM
t = P(pM(At | S), pM

eq(At)).

Equilibrium-consistency condition:

Eeq = P(peq(At), pM
eq(At))� 1. (∗)

Model error during relaxation to equilibrium:

Et = P(p(At | S), pM(At | S)).

Assessing models via relative entropy

If (∗) is not met, DM
t measures false skill at all times.

At lead time t, DM
t conveys genuine predictive skill only if

Et and Eeq are both small.



Markov models of regime transitions
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Forecast PDFs in Markov models of
regime transitions:

pMk(At | S) =
K∑

i=1

[exp(Lt)]Sip(A0 | i).

Discrepancy of the Markov model from
equilibrium (can convey false skill):

DMk
t =

∫
pMk

t log
pMk

t

pM
eq
.

Error in the Markov model relative to the
perfect model:

Ek
t =

∫
pk

t log
pk

t

pMk
t
.

Equilibrium consistency is essential for long-range forecasts.
Persistence of imperfect models is not synonymous with fidelity.



Conclusions
Information-theoretic notion of predictability as the additional
information beyond equilibrium about future values of
observables gained by observing initial data S.

Model error measured by the lack of information in forecast
PDFs of imperfect models relative to a reference model (ideally,
nature).

For decadal initial-value forecasts it suffices to take S to be the
affiliation of the system at time t = 0 to a coarse-grained
partition of the set of possible initial data.

No need to specify initial data (a major challenge in
ensemble forecasts).
Clustering alleviates the curse of dimension.

In this context, forecasts with imperfect should be assessed via:
1 The fidelity of reproducing the equilibrium climate.
2 Model error during relaxation to equilibrium.
3 Amount of information provided beyond equilibrium.
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Generalized second law

forecast lead time t

D
t

The relative entropy Dt is a
non-increasing function of time
if the following conditions are
met:

1 As t→∞ the conditional probabilities p(At | S) converge
to an equilibrium distribution peq(At) for all initial data S.

2 p(At | S) can be uniquely determined if we know
p0 = p(At | S).

This means that the system must be closed and At has no
memory or hysteresis.



Setting

High-dimensional, chaotic, and strongly mixing dynamical
system,

dx
dt

= F(x, t), x ∈ RN, N � 1.

Incomplete measurements,

z(t) = G(x(t)), z ∈ Rn, n� N.

Observable to be predicted (here assumed scalar),

At = A(x(t)).



Evaluating the cluster coordinates1 Collect a training time series z(t), and take the
running-average over a time window ∆t.
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n-dim space of initial data
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2 Determine θk by K-means
clustering of z∆t(t).



The 1.5-layer model∗

~v = (−∂yh, ∂xh)ρ1

ρ2

~v = 0

h(x, y, t)

Quasigeostrophic vorticity
equation for h.

Interfacial friction.

Subgrid-scale diffusion.

Asymmetric double-gyre
forcing.

∗McCalpin & Haidvogel (1996), J. Phys. Oceanogr., 26, 739



Setup

Full dynamical system x(t) = h(r, t)

Incomplete measurements z(t) = (PC1(t), . . . ,PC20(t))

Prediction observables E (energy), PC1, PC2

20-dimensional measurement vector
Scalar prediction observables



Empirical orthogonal functions (EOFs)

h(r, t) =
n∑

i=1

PCi(t)EOFi(r) + residual.

PCi is the principal component corresponding to EOFi.
For given n, this basis minimizes the norm of the residual.



Long-range forecasting skill

Predictive skill for energy. The optimal running-average window ∆τ

to preprocess the initial data maximizes Dt for the given prediction
observable and forecast lead time.



Information content in the partitions
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Optimal running-average
window ∆τ depends on
the prediction observable.

∆τ ∼ 20 days is favored
for PC1.
Optimal partitions for E
require more extensive
coarse-graining
(∆τ ∼ 1000 days).

The additional information
content in K > 7 partitions
is negligible.
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